Plus, even if a user is able to add personalized elements to an object, ensuring those customizations don't hurt the object's functionality requires an additional level of domain expertise that many novice makers lack.
To help makers overcome these challenges, MIT researchers developed a generative-AI-driven tool that enables the user to add custom design elements to 3D models without compromising the functionality of the fabricated objects. A designer could utilize this tool, called Style2Fab, to personalize 3D models of objects using only natural language prompts to describe their desired design. The user could then fabricate the objects with a 3D printer.
"For someone with less experience, the essential problem they faced has been: Now that they have downloaded a model, as soon as they want to make any changes to it, they are at a loss and don't know what to do. Style2Fab would make it very easy to stylize and print a 3D model, but also experiment and learn while doing it," says Faraz Faruqi, a computer science graduate student and lead author of a paper introducing Style2Fab.
Style2Fab is driven by deep-learning algorithms that automatically partition the model into aesthetic and functional segments, streamlining the design process.
In addition to empowering novice designers and making 3D printing more accessible, Style2Fab could also be utilized in the emerging area of medical making. Research has shown that considering both the aesthetic and functional features of an assistive device increases the likelihood a patient will use it, but clinicians and patients may not have the expertise to personalize 3D-printable models.
With Style2Fab, a user could customize the appearance of a thumb splint so it blends in with her clothing without altering the functionality of the medical device, for instance. Providing a user-friendly tool for the growing area of DIY assistive technology was a major motivation for this work, adds Faruqi.
He wrote the paper with his advisor, co-senior author Stefanie Mueller, an associate professor in the MIT departments of Electrical Engineering and Computer Science and Mechanical Engineering, and a member of the Computer Science and Artificial Intelligence Laboratory (CSAIL) who leads the HCI Engineering Group; co-senior author Megan Hofmann, assistant professor at the Khoury College of Computer Sciences at Northeastern University; as well as other members and former members of the group. The research will be presented at the ACM Symposium on User Interface Software and Technology.
COMPAMED-tradefair.com; Source: Massachusetts Institute of Technology